Sample Problems For Final

Instructions: The test consists of 15 multiple choice questions (worth 4 pts each) and 6 problems (worth 10 points each).

Part I - Limit Problems (4 pts each)

$$1) \lim_{x \to 0} \frac{\sin(2x)}{3x} =$$

(a) 3/2

(b) 2/3

(c) 0

(d) 1 (e) does not exit

2)
$$\lim_{x\to\infty} \frac{-2x^2+7x-3}{(1-x)(x+3)} =$$

(a) -2

(b) -3

(c) 2

(d) 3

(e) none of these

3)
$$\lim_{h\to 0} \frac{\sqrt{4+h}-2}{h} =$$

(a) 2

(b) 1/2

(c) 1/4

(d) 1

(e) ∞

4)
$$\lim_{x\to\pi} \sin(x+\sin(x)) =$$

(a) π

(b) -1

(c) 1

(d) 0

(e) $\cos(\pi) (1 - \cos(\pi))$

5)
$$\lim_{h\to 0} \frac{tan^{-1}(e^h)-\pi/4}{h} =$$

(c) 0 (d)
$$-\pi/4$$
 (e) ∞

Part II - Derivative Problems (4 pts each)

6)
$$f(x) = \frac{x^2 + 2}{x^4 - 3x^2 + 1}$$
 $f(x) =$

(a)
$$\frac{(2x)(x^4 - 3x^2 + 1) + (x^2 + 2)(4x^3 - 6x)}{(x^4 - 3x^2 + 1)^2}$$
 (b)
$$\frac{(2x)(x^4 - 3x^2 + 1) - (x^2 + 2)(4x^3 - 6x)}{(x^4 - 3x^2 + 1)^2}$$

(b)
$$\frac{(2x)(x^4-3x^2+1)-(x^2+2)(4x^3-6x)}{(x^4-3x^2+1)^2}$$

(c)
$$\frac{1}{x^4 - 3x^2 + 1}$$

(d)
$$\frac{(x^3+x-2)-(x^2+2)(3x^2+1)}{(x^4-3x^2+1)^2}$$

(e)
$$(2x) \frac{1}{x^4 - 3x^2 + 1} + \frac{1}{x^4 - 3x^2 + 1}$$

7)
$$g(x) = e^x(\tan x - \sin x)$$

$$g'(x) =$$

(a)
$$e^x(sec^2x - cos x)$$

(b)
$$e^x(\tan x - \sin x) + e^x(\frac{1}{1+x^2} - \frac{1}{\sqrt{1-x^2}})$$

(c)
$$xe^{x-1}(\tan x - \sin x) + e^x(\sec^2 x - \cos x)$$

(d)
$$e^x(\tan x - \sin x + \sec^2 x - \cos x)$$

8) If y is implicitly defined by $e^{x/y} = x - y$ then y' =

(a)
$$\frac{e^{\frac{x}{y}}y-y^2}{e^{\frac{x}{y}}x-y^2}$$

(b)
$$1 - e^{\frac{2}{3}}$$

(a)
$$\frac{e^{\frac{x}{y}}y-y^2}{e^{\frac{x}{y}}x-y^2}$$
 (b) $1-e^{\frac{x}{y}}$ (c) $\frac{e^{\frac{x}{y}}xy-y^2}{e^{\frac{x}{y}}x-y^2}$ (d) $\frac{e^{\frac{x}{y}}y-y^2}{e^{\frac{x}{y}}-y^2}$

(d)
$$\frac{e^{\frac{x}{y}}y-y^2}{e^{\frac{x}{y}}-v^2}$$

(e)
$$\frac{e^{\frac{x}{y}}y - y^2 + y^2}{e^{\frac{x}{y}}x}$$

$$9) y = (\sin x)^x \qquad y' =$$

(a)
$$\ln(\sin x) + x \frac{\cos x}{\sin x}$$
 (b) $(\sin x)^x \cos x$ (c) $x(\sin x)^{x-1} \cos x$

(b)
$$(\sin x)^x \cos x$$

(c)
$$x(\sin x)^{x-1}\cos x$$

(d)
$$(\sin x)^x \left(\ln(\sin x) + x \frac{\cos x}{\sin x}\right)$$

(d)
$$(\sin x)^x \left(\ln(\sin x) + x \frac{\cos x}{\sin x}\right)$$
 (e) $(\sin x)^x \left(\ln(\sin x) - x \frac{\cos x}{\sin x}\right)$

- 10) A car moves along the x axis with position from the starting point given by some function, S(t). If the acceleration, a(t) = S''(t) is positive, then the SPEED is
- (b) Decreasing (c) Can't tell without more information. i.e. may be (a) Increasing increasing or decreasing.

Part III - Integration Problems (4 pts each)

11) Suppose f(x) is continuous everywhere and

$$F(x) = \int_0^x f(t)dt$$

Which of the following is true. i.e. the statement is true for the reason given.

- (a) F(x) is differentiable everywhere because of the Mean Value Theorem
- (b) F(x) is continuous everywhere because F(x) has a derivative by the Fundamental Theorem of Calculus and differentiable functions are continuous.
- (c) F(x) is continuous because the Intermediate Value Theorem proves that the integral of a continuous function is continuous.
- (d) F(x) has a derivative because the chain rule implies that the integral of a continuous function has a derivative.
- (e) The function F(x) does not have a derivative because it is an integral.

$$12) \int \frac{x}{\sqrt{1-4x^2}} dx =$$

(a)
$$-\frac{1}{4}\sqrt{1-4x^2}+C$$

(a)
$$-\frac{1}{4}\sqrt{1-4x^2} + C$$
 (b) $\frac{1}{12}(1-4x^2)^{-3/2} + C$ (c) $\frac{1}{4}(1-4x^2)^{-3/2} + C$

(c)
$$\frac{1}{4}(1-4x^2)^{-3/2}+6$$

(d)
$$x \sin^{-1}(2x) + C$$
 (d) $\sqrt{1 - 4x^2} + C$

(d)
$$\sqrt{1-4x^2} + C$$

$$13) \int_1^e \frac{\ln x}{x} dx =$$

- (a) $e^2/2$
- (b) 1
- (c) 1/2
- (d) 2 (e) e 1

14) Compute
$$\int_0^1 \frac{3x}{\sqrt[3]{x^2+1}} dx$$

(a)
$$\frac{9}{4}(\sqrt[3]{4}-1)$$

(b)
$$(\sqrt[3]{4} - 1)$$

(c)
$$\frac{\sqrt[3]{25}}{4}$$

(d)
$$\frac{9}{4}$$

(a)
$$\frac{9}{4}(\sqrt[3]{4}-1)$$
 (b) $(\sqrt[3]{4}-1)$ (c) $\frac{\sqrt[3]{25}}{4}$ (d) $\frac{9}{4}$ (e) $\frac{9}{4}(\sqrt[3]{25}-\sqrt[3]{4})$

15)
$$R_n=rac{1}{n}igg(\sqrt{rac{1}{n}}+\sqrt{rac{2}{n}}+\cdots+\sqrt{rac{n}{n}}igg)$$
 is an nth Riemann sum on the interval [0, 1]. Then $\lim_{n\to\infty}R_n=$

- (a) 1
- (b) 1/2 (c) 3/2 (d) 2/3
- (e) 2

Part IV - Non-Multiple Choice Problems (10 pts each)

16) Use implicit differentiation to find an equation of the tangent line to the curve defined implicitly by $\sin(x + y) = 2x - 2y$ at the point (π, π)

17) The angle of elevation of the sun is decreasing at a rate of 0.25 rad/hr. How fast is the shadow cast by a 400 ft tall building increasing when the angle of elevation of the sun is $\pi/6$?
18) If 1200 cm^2 of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

19) Suppose f(0) = 0, $f(\pi) = 0$, and $f''(x) = 2e^x + 3\sin x$. Find f(x).

20) Using the definition of derivative, find f'(x) where $f(x) = \sqrt{2-3x}$

21) Calculate $\int_{-1}^{2} (x^2 - 2x + 1) dx$ using Riemann sums.